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Abstract. We consider the modified (or twisted) Yang–Baxter equations for theSLq(N) groups
andSLq(N |M) supergroups. The general solutions for these equations are presented in the case
of the linear quantum (super)groups. The introduction of spectral parameters in the twisted
Yang–Baxter equation and its solutions are also discussed.

1. Introduction

Recently various types of modified Yang–Baxter equation (mYBE) have been considered.
First of all such mYBEs appeared in investigations on special exchange algebras [1].
Another one was explored [2] in the context of the construction of new integrable lattice
models which generalize theSL(3) (and in general theSL(N)) chiral Potts model. After
a series of papers (see [3]) devoted to the solutions of the tetrahedron equation, a similar
modification, but now for the 3D analogues of the YBE, has been used for a construction
of new integrable 3D lattice theories [4]. Moreover, a variant of the YBE has been found
as certain cubic relations (forR-matrices being a special set of the quantum 6j symbols)
which express the consistency of a quadratic algebra for elements of the matrix generating
a set of Clebsch–Gordon coefficients [5–7]. It is interesting that this modification coincides
with that considered in [1] and the corresponding mYBE andR-matrices essentially depend
on the phase space coordinates. Note that the same dependence occures for the classical
r-matrices (which are called dynamicalr-matrices) in Calogero–Moser type models (see
[8, 9] and references therein). On the other hand, we recall that theq-analogues of the 6j
symbols (or Racah coefficients) give the braiding/fusing matrices expressing the property
of crossing symmetry for four-point conformal blocks in 2D conformal field theories (see,
e.g., [10]). Finally we stress that the analogous ‘twisted’ YBE has also been proposed in
the context of quasi-Hopf algebras [11].

In this paper we investigate the mYBEs that appeared in [1] as consistency relations for
exchange matrices and that were considered in [5–7] as some relations for theSLq(2) 6j
symbols. Here, in the cases of theSLq(N) andSLq(N |M) (super)groups, we present the
explicit general solutionsR(p) for such mYBEs. Then we show how one can generalize
these mYBEs and their solutions by introducing spectral parameters and also present the
Yangian-type limits for these solutions. Our conjecture is that after introducing the spectral
parameter we obtain some objects related to the quantum affine Kac–Moody algebras.

† Permanent address: Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region, 141 980,
Russia.
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2. Quantum deformations of dynamical systems on cotangent bundles of Lie groups
or Alekseev–Faddeev toy models

At the beginning, to introduce the objects which will be under consideration, we recall some
facts from [6]. It is known [12] that apparently all finite-dimensional integrable models, like
the Toda chain or Calogero particles, can be considered as systems which can be obtained
by the Hamiltonian reduction of geodesic motion on the cotangent bundles of some Lie
groupsG (with Lie algebrasG) and described by the Lagrangians

L(t) =
〈
L

∣∣∣∣ d

dt
g g−1

〉
− 1

2
〈L|L〉 + 〈L− µL|φ〉 + 〈g−1Lg − µR|ψ〉 (1)

where t is time, g(t) ∈ G, L(t) and constant elementsµL,R belong to the spaceG∗ dual
to the Lie algebraG, terms withφ, ψ ∈ G define the momentum mappings,φ, ψ are
simply Lagrange multipliers, and〈·|·〉 is a paring ofG andG∗. We also identifyG andG∗

through the invariant Killing metric. The explicit choice of the groupG, multipliersφ, ψ
and elementsµL,R specifies the dynamical system. If we consider the case for which we
can take the matrix representation forG and G∗ such that the pairing will be defined via
the operatorT r (〈A|B〉 → T r(AB)), then, one can find the equations of motion from the
Lagrangian (1) and prove that the quantitiesIn = T r(Ln) are integrals of motion. Thus,
for appropriate momentum mappings we can expect that the system with Lagrangian (1)
yields an example of the integrable model. From the Lagrangian (1) we find the following
Poisson brackets (see, e.g., [6]):

{g1, g2} = 0

{L1, g2} = C g2

{L1, L2} = − 1
2[C, L1 − L2]

(2)

where as usualg1 = g ⊗ 1, L2 = 1 ⊗ L, . . . andC = ta ⊗ tb η
ab is an ad-invariant tensor

(the ηab define the Killing metric and theta form the basis for Lie algebraG). Then, for
the caseG = SL(N,C) (actually forSU(N)), the diagonalization of the leftL and right
g−1Lg momenta can be considered:

L = uPu−1 g−1Lg = v−1Pv (3)

and this leads to the diagonalization of the group elementg:

g = uQ−1 v . (4)

Here we have used

P = − i

2
diag{p1, p2, . . . , pN }

N∑
i=1

pi = 0 (5)

Q = diag{exp(ix1), exp(ix2), . . . ,exp(ixN)}
N∑
i=1

xi = 0 (6)

and the matricesu, v belong to the homogeneous spaceG/H whereH is a Cartan subgroup
associated withP .

In the papers [6, 7, 13] it was shown that Poisson structure (2), in terms of the new
variables{u, v, P, Q}, acquires the form

{u1, u2} = −u1 u2 r0(p) {v1, v2} = r0(p) v
1 v2 (7)
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and

{xi, pj } = δij (1 6 i, j 6 N − 1) {u0, v0} = 0 {u0, pi} = 0 = {v0, pi} (8)

where we have introducedu = u0Q, v = Qv0,

r0(p) =
∑
α

i

pα
(eα ⊗ e−α − e−α ⊗ eα) (9)

andα runs over positive roots ofG. Namely we have

eα = ejk j < k (eij ekl = δkj eil) pα = (pj − pk) .

The variablep (in r0(p)) means thatr0 depends on all momentspi . The quantum version
of the formulae (7)–(9) has been discussed in [6, 7] for the case ofSLq(2) group and, as it
has been pointed out in [7], can be postulated for the general case ofSLq(N) in the same
form:

R12u1 u2 = u2 u1R(p)12

R(p)12v2 v1 = v1 v2R12

(10)

[u1
0, v

2
0] = 0 [u0, pi ] = 0 = [v0, pi ] [xi, pj ] = i h δij (i, j 6 N − 1) . (11)

Here q is a deformation parameter,h is Planck’s constant,R12 is the well knownR-
matrix for theGLq(N) group (see [14, 15]) and we introduce a newR-matrix R(p)12

which depends non-trivially on the momentspi, ∀ i. For simplicity we remove from
equations (10) the non-essential factor(q−1/N) which transforms theGLq(N) R-matrix to
theSLq(N) one. Here and below we useR-matrix formalism which was developed in [15].
We note that theu andv algebras (10) can be identified via relationu = v−1. Let us recall
that theGLq(N) R-matrix satisfies the YBE

R̂ R̂′ R̂ = R̂′ R̂ R̂′ (12)

and the Hecke relation

R̂2
12 = λR̂12 + 1 λ = q − q−1 . (13)

whereR̂ = R̂12 = P12R12, R̂′ = P23R23 andP12 is a permutation matrix. Using relation
(13) we immediately derive from equations (10) thatR̂(p) = R̂(p)12 = P12R(p)12 also
obeys the Hecke relation

R̂(p)2 = λR̂(p)+ 1 . (14)

Considering third-order monomials inu (or in v) and using the commutation relations
(10), (11) gives the analogue of the YBE [1, 5–7] for the new objectsR(pi)12:

(Q1)
−1R(p)23Q1R(p)13 (Q3)

−1R(p)12Q3 = R(p)12 (Q2)
−1R(p)13Q2R(p)23 . (15)

This equation can be rewritten in the form (cf equation (12))

R̂(p) R̃(p)′ R̂(p) = R̃(p)′ R̂(p) R̃(p)′ (16)

where the matrix̃R(p)′ = Q3 R̂(p)23 (Q3)
−1 obviously also satisfies the Hecke condition.

In seeking solutions of equations (16) it is convenient to rewrite them as

(Q−1
3 R̂(p)Q3) R̂(p)

′ (Q−1
3 R̂(p)Q3) = R̂(p)′ (Q−1

3 R̂(p)Q3) R̂(p)
′ (17)
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where R̂(p)′ = R̂(p)23. We call equations (15)–(17) modified or twisted Yang–Baxter
equations. Note that from equation (16) one can obtain relations that are similar to the
reflection equations:

L(p) R̃(p)′ L(p) R̃(p)′ = R̃(p)′ L(p) R̃(p)′ L(p)

L̃(p) R̂(p) L̃(p) R̂(p) = R̂(p) L̃(p) R̂(p) L̃(p)

whereL(p) = R̂(p)2, L̃(p) = (R̃′(p))2.
In the papers [5–7] the explicit form of the matrixR(p) in SLq(2) case has been

presented. There it was also stressed that the elements of the matrixR(p) give the
special set of the 6j symbols for theSLq(2) group. Below we resolve equations (16)
(and, thus, derive the explicit formulae forR(p)) in the case of the groupsSLq(N) and
supergroupsSLq(N |M). Note that special solutions of (17) for arbitrary simple quantum
groups (includingSLq(N)) are presented in [1]. Our solutions are multiparametric and
more general. The specific choices of these parameters lead our solutions to the special
forms of R(p) which could be interpreted as the corresponding 6j symbols [5] or as the
exchangeR-matrix for the vertex algebra [1].

3. Solutions of the modified YBE for the case of linear quantum groups

The mYBE and their solutions for the case ofSLq(N) were first considered in [1]. Here
we obtain a more general multiparametric solution for the case of linear quantum groups
and supergroups. We will consider the case ofGLq(N) andGLq(K|N−K). In the case of
specialq-groups, the solutionsR(p) can be obtained by multiplyingR(p) by some factor
which is a simple function ofq (see below).

Let us seek a solution of the mYBE (17) in the form

R̂12 = R̂(p)
i1i2
j1j2

= δ
i1
j2
δ
i2
j1
ai1i2(p)+ δ

i1
j1
δ
i2
j2
bi1i2(p) . (18)

Without limiting generality one can putbii(p) = 0. Now the condition that theR(p) (taking
the form (18)), satisfying the Hecke relation (14) gives the following constraints:

bij + bji = λ i 6= j (19)

aij aji − bij bji = 1 i 6= j (20)

a2
i − λai − 1 = 0 ⇒ ai − λ = 1

ai
ai ≡ aii . (21)

Note that equation (21) has two solutions:ai = ±q±1 and therefore the coefficientsai are
independent of the parameterspk. If we takeai = q, ∀ i (or ai = −q−1, ∀ i) then we will
have the case of the groupGLq(N) (or GL−q−1(N)). But if we consider the mixing case,
ai = q for 1 6 i 6 K andai = −q−1 for K + 1 6 i 6 N , then we come to the case of the
supergroupsGLq(K|N −K).

Now let us use the relations (cf equation (11))

exp(−i xj ) pk exp(i xj ) = pk + hδkj (1 6 k, j 6 N) (22)

and substitute (18) in the mYBE (17). As a result, in addition to relations (19)–(21), we
obtain new constraints on the functionsaij (p) andbij (p). First of all we deduce

aij (p1, . . . , pN) = aij (pi, pj ) bij (p1, . . . , pN) = bij (pi, pj ) (23)
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and, as a consequence, relations (19), (20) have to be rewritten in the form

bij (pi, pj )+ bji(pj , pi) = λ

aij (pi, pj ) aji(pj , pi)− bij (pi, pj ) bji(pj , pi) = 1 .

Then we have the constraint

bij bjk bki + bik bkj bji = 0 i 6= j 6= k 6= i (24)

(where there is no summation overi, j, k) and the equations

bij (pi + h, pj ) = bij (pi, pj ) ai

1/ai + bij (pi, pj )
(25)

bij (pi, pj + h) = bij (pi, pj )/aj

aj − bij (pi, pj )
. (26)

Using equations (25) and (26) leads to the following general relations:

bij (pi + n h, pj +mh) = ani a
−m
j bij (pi, pj )

a−n
i amj + bij (pi, pj ) (a

n
i a

−m
j − a−n

i amj )/λ

= λ ani a
−m
j bij (pi, pj )

ani a
−m
j bij (pi, pj )+ a−n

i amj bji(pj , pi)
. (27)

From these relations one can immediately find the general solution for the coefficients
bij (p):

bij (pi, pj ) = a
pi/h

i a
−pj /h
j b0

ij

a
−pi/h
i a

pj /h

j + b0
ij (a

pi/h

i a
−pj /h
j − a

−pi/h
i a

pj /h

j )/λ

= λ a
pi/h

i a
−pj /h
j b0

ij

a
pi/h

i a
−pj /h
j b0

ij + a
−pi/h
i a

pj /h

j b0
ji

(28)

where the constantsb0
ij = bij (0, 0) have to obey the algebraic relations

b0
ii = 0 b0

ij + b0
ji = λ

b0
ij b

0
jk b

0
ki + b0

ik b
0
kj b

0
ji = 0

(29)

which can be deduced by the substitution of equation (28) in (19) and (24).
It is now clear that ifai = aj (the indicesi and j ‘have the same grading’) then

bij (pi, pj ) = bij (pi − pj ), but if ai = −1/aj (the case of supergroups when the indicesi

and j ‘have opposite grading’) then we deduce thatbij (pi, pj ) = bij (pi + pj ). Note that
the only conditions on the parametersaij (p) needed for the solution of the mYBE are listed
in (20) and (23).

Let us consider the case of theGLq(N) group. In this case we haveai = q ∀ i and
relation (28) takes the form

bij (pi − pj ) = q(pi−pj )/h b0
ij

q(−pi+pj )/h + [ pi−pj
h

]q b0
ij

(30)

while for the functionsaij (pi, pj ) we obtain the following relations from (20):

aij (pi, pj ) aji(pj , pi) = 1 + λ2 b0
ij b

0
ji

(q(pi−pj )/h b0
ij + q(pj−pi)/h b0

ji)
2
. (31)
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In equation (30) we have used the standard notation [x]q = (qx − q−x)/(q − q−1). One
can obtain from these expressions the solutions discussed in [1, 5–7] if we take the proper
normalization ofaij (e.g., Faddeev’s or unitary normalizationaij (pi − pj ) = aji(pj − pi))
and consider, in (30), (31), the limitb0

ij → ∞ (i < j). This limit can be performed
self-consistently such that it does not cancel the conditions (29). Then we recall that our
consideration was done for the case of the general groupsGLq(K|N −K). In fact one can
obtainSL-matricesR(p) multiplying them by the functionsq1/(K−N)−1/K which are needed
for obtaining the identitySdetq(R) = 1 (for theSLq(N) case we have to multiplyR(p) by
q−1/N ). As a result for theSLq(N) case we have the matrix [q−1/N ·R(p)], equation (18),
with the substitution

bij (pi − pj ) = q(pi−pj )/h

[(pi − pj )/h]q
= λ− bji(pj − pi) (32)

aij (pi − pj ) =
(
[(pi − pj )/h+ 1]q [(pi − pj )/h− 1]q

)1/2

[(pi − pj )/h]q εij
= aji(pj − pi) (33)

whereεij = ±1 (i < j), = ∓1 (j > i). This choice ofaij leads to the unitary condition
(for real q andp†

i = pi):

R(p)
†
12 = R(p)

t1t2
12 = R(p)21.

Analogously, for theSLq(K|N − K) case, we obtain the matrixq1/(K−N)−1/K · R(p),
equation (18):

R̂(p)SLq(K|N−K) = q1/(K−N)−1/K
(
δ
i1
j2
δ
i2
j1

[
(−1)(i1) q1−2(i1)δi1i2 + a(pi − pj )(θK+1,i θK+1,j

+θi,Kθj,K)+ a(pi + pj )(θK+1,i θj,K + θi,KθK+1,j )
]

+δi1j1
δ
i2
j2

[
b(pi − pj )θK+1,i θK+1,j + b(pj − pi)θi,K θj,K

b(pi + pj )θK+1,i θj,K + b(−pi − pj )θi,K θK+1,j
])

(34)

where(i) = 0 for 1 6 i 6 K and= 1 for K + 1 6 i 6 N , θij = 1 for i > j and= 0 for
i 6 j . The functionsa(pi − pj ) = aij (pi − pj ), b(pi − pj ) = bij (pi − pj ) are defined in
(32), (33).

To conclude this section we stress that we have found a more general solution of the
mYBE, equations (15)–(17), than that obtained in [1, 5]. Namely, our solutions depend
on the set of arbitrary parametersb0

ij constrained by the conditions (29). The role of
these parameters is still to be clarified. Taking some special limits and choosing the
normalization ofaij one leads to the known solutionsR(p) of the papers [1] and [5]
(see, e.g., equations (32), (33)).

4. Modified (twisted) YBE with spectral parameters

In this section we show that mYBE, equations (15)–(17), can be generalized by introducing
spectral parametersy, z, . . . . We demonstrate that every solutionR(p) which has been
found in section 3 will lead to the solutionR(p, y) for the mYBE with spectral parameters.
It is interesting to note that such introduction of the spectral parameters can be done in
complete analogy with the usual method of obtaining the trigonometric solutions

R̂(y) = y−1 R̂ − y R̂−1 (35)
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of the YBE from theR-matricesR̂ related to theGLq(N) groups. On the other hand, we
know that the trigonometric solutions (35) are related to the quantum Kac–Moody algebras
[16]. In this connection (following the statements of [5–7]) it is natural to conjecture that
R(p, y) could be interpreted as a special set of 6j symbols for theq-deformations of linear
affine algebras.

The natural assumption about the form of the mYBE dependent on the spectral
parameters is as follows

R̂(p, y) R̃′(p, y · z) R̂(p, z) = R̃′(p, z) R̂(p, y · z) R̃′(p, y) . (36)

Now it is not difficult to check by using mYBE (16) and the Hecke relations (14) that the
following matrices:

R̂(p, y) = y−1 R̂(p)− y R̂(p)−1

R̃′(p, y) = y−1 R̃′(p)− y (R̃′(p))−1 = Q3 R̂
′(p, y)Q−1

3

(37)

are the solutions of the new mYBE (36). We note that the solutions (37) satisfy the identity

R̂(p, y) R̂(p, y−1) = (
λ2 − (y − y−1)2

)
which is a kind of unitary condition forR(p) (if y∗ = y−1). It is clear that the analogue of
relations (10) depending on the spectral parameters has the form

R̂(y) u1(yz) u2(z) = u1(z) u2(yz) R̂(p, y) .

Now let us putq = exp(γ h) [6, 7] andy = exp(− 1
2λ θ). Following [6] we consider two

different cases: the deformed classical case (h = 0, γ 6= 0) and the undeformed quantum
case (γ = 0, h 6= 0). In the first case we obtain the result thatR̂(p, y)/λ tends to the
YangianR-matrix R̂(θ) = θ P12 − 1 which satisfies the usual YBE

R̂(θ) R̂′(θ + θ ′) R̂(θ ′) = R̂′(θ ′) R̂(θ + θ ′) R̂′(θ) .

In the second case we derive

lim
γ→0

R̂(p, y)

λ
= R̂(p, θ) = θ R̂0(p)− 1 (38)

whereR̂0(p) is represented in the form (18) with the following parameters (cf [6, 7]):

bij = h

pi − pj
= −bji

aij = ((pi − pj + h)(pi − pj − h))1/2

εij (pi − pj )
= aji

and the matrixR̂(p, θ), equation (38), satisfies the twisted YBE

R̂(p, θ) R̃′(p, θ + θ ′) R̂(p, θ ′) = R̃′(p, θ ′) R̂(p, θ + θ ′) R̃′(p, θ) . (39)

To conclude this paper we note that it would be extremely interesting to use the twisted
YBEs (36), (39) and their solutions (37), (38) to formulate integrable models, e.g., via
the box construction of [2] or to relate these solutions to the braiding matrices describing
generalized statistics (see, e.g., [17]).
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